SCHEME & DETAILED SYLLABUS (2nd year CBCS)

FOR

BACHELORS OF TECHNOLOGY [Mechanical and Automation Engineering]

Offered by MAE Dept.

Indira Gandhi Delhi Technical University for Women (Established by Govt. of Delhi vide Act 09 of 2012) (Formerly Indira Gandhi Institute of Technology) Kashmere Gate Delhi-110006

Course Structure for B.Tech Programme

First Year (Common courses for all B.Tech Programme)

		First Semester			
S.No.	Subject Code	Subject Name L-T-P Cr		Credits	Category
1.	BAS - 101	Applied Mathematics-I 3-1-0 4		4	BAS
2.	BAS-103	Applied Physics-I 2-1-2		4	BAS
3.	BAS-105	Applied Chemistry 2-1-2		4	BAS
4.	BMA -	Engineering Mechanics/Basic Electrical	3-0-2	4	OEC
	110/BEC - 110	Engineering			
5.	BMA -	Workshop Practice/ Engineering	0-1-2	2 OEC	
	120/BMA -130	Graphics			
6.	HMC-110/	Humanities and Social	3-1-0/	4	HMC/
	BCS - 110	Science/Programming in C Language 3-0-2			OEC
		Total	Total 22		

		Second Semester			
S.No.	Subject Code	Subject Name	L-T-P	Credits	Category
1.	BAS -102	Applied Mathematics-II 3-1-0		4	BAS
2.	BAS -104	Applied Physics -II	2-1-2	4	BAS
3.	BAS -106	Environmental Science 2-1-2		4	BAS
4.	BEC -	Basic Electrical Engineering /Engineering3-0-2		4	OEC
	110/BMA -110	0 Mechanics			
5.	BMA- 130	Engineering Graphics / Workshop	op 0-1-2 2 OEC		OEC
	/BMA -120	Practice			
6.	BCS - 110 /	Programming in C language /Humanities	Iumanities 3-0-2/ 4 C		OEC /
	HMC -110	and Social Science 3-1-0			HMC
		Total		22	

			· ·			
S.No.	Subject Code	Subject Name	L-T-P	Credits	Category	
1.	BMA -201	Production technology -I	3-0-2	4	DCC	
2.	BMA -203	Strength of Materials 3-0-2 4		4	DCC	
3.	BMA- 205	Thermal Engineering - I	3-0-2	4	DCC	
4.	BAS -205	Numerical Techniques for Engineers	2-1-0	3	BAS	
5.	BMA- 207	Machine Drawing Lab	0-0-2	1	DCC	
6.	BMA- 253	Industrial Training	-	1	DCC	
7.	GEC- 201	Generic Open Elective –I	2-0-0/ 1-1-0/ 0-0-4	2	GEC	
	BEC -209	Analog and Digital electronics	3-0-2			
0	BCS - 201	Data Structures	3-0-2	4		
δ.	BIT - 201	Database Management Systems	3-0-2	2 OEC		
	BAS - 201	Material Science and Engineering	3-1-0			
		Total		23		
	Fourth Semester (Second Year)					
S.No.	Subject Code	Subject Name	L-T-P	Credits	Category	
1	BMA- 202	Production technology - II	3-0-2	4 DCC		
2	BMA- 204	Theory of Machines	3-0-2	4 DCC		
3	BMA -206	Engineering Materials	3-0-2	4	DCC	
4	BMA- 208	Thermal Engineering-II	3-0-2	4	DCC	
	BCS -202	Computer Organization & Architecture	3-0-2			
	BIT -204	Object Oriented Programming 3-0-2				
	BEC -210	Elements of Information Theory	ments of Information Theory 3-1-0			
5	BAS-202	Nano Structures & Materials in Engineering	3-1-0	4	OEC	
	BAS-204	Optical Engineering	2-1-2			
	BAS -206	Optimization Techniques	3-1-0			
6	HMC - 202	Disaster Management	1-0-2	2	НМС	
		Tetal		22		

B.Tech.(MAE) Third Semester (Second Year)

S.No.	Subject Code	Subject Name	L-T-P	Credits	Category
1.	BMA -301	Machine Design	3-0-2	4	DCC
2.	BMA -303	Fluid Mechanics and Hydraulic Machines	3-0-2	4	DCC
3.	BMA -305	Automobile Engineering	3-0-2	4	DCC
4.	BMA -3XX	Department Elective I	3-0-2 /3- 1-0	4	DCE
5.	HMC	Professional Ethics and Human Values	3-0-0	3	HMC
6.	BMA- 353	Industrial Training	-	1	DCC
7.	GEC -301	Generic Open Elective- II	2-0-0	2	GEC
		Total		22	

Fifth Semester (Third Year)

Sixth Semester (Third Year)

S.No.	Subject Code	Subject Name L-T-P		Credits	Category
1.	BMA- 304	Heat Transfer	3-0-2	4	DCC
2.	BMA -306	Computer Aided Design	3-0-2	4	DCC
3.	BMA -308	Production Management	3-0-0	3	DCC
4.	BMA -310	Advanced Machine Design Lab	Advanced Machine Design Lab 0-0-2		DCC
5.	BMA -3YY	Department Elective II 3-0-2/3- 1-0		4	DEC
6.	BMA -3ZZ	Department Elective III 3-0-2/3- 1-0 4		4	DEC
	HMC-302	Principles of Management	2-0-0		
7.	HMC-304	Marketing Management	2-0-0	2	НМС
	HMC-306	Financial Management	2-0-0		
	HMC-308	Human Resource Management	2-0-0		
		Total		22	

S.No.	Subject Code	Subject Name	L-T-P	Credits	Category
1.	BMA- 401	Finite Element Analysis3-0-2		4	DCC
2.	BMA- 403	Mechatronics	3-0-2	4	DCC
3.	BMA- 451	Minor Project	0-0-8	4	DCC
4.	BMA- 453	Industrial Training / Internship -		1	DCC
5.	BMA- 4XX	Department Elective IV	3-0-2 /3- 1-0	4	DEC
6.	BMA-4YY	Department Elective V	3-0-2/3- 1-0	4	DEC
		Total		21	

Seventh Semester (Fourth Year)

Eighth Semester (Fourth Year)

S.No.	Subject Code	Subject Name	L-T-P	Credits	Category
1	BMA -402	Computer Aided Manufacturing	3-0-2	4	DCC
2	BMA -404	Robotics and Computer Integrated Manufacturing	3-0-2	4	DCC
3	BMA- 452	Major Project	0-0-16	8	DCC
4	BMA- 4ZZ	Department Elective VI	3-0-2/3- 1-0	4	DEC
5.	GEC-402	Generic Open Elective III	0-2-0 0-0-4 2-0-0	2	GEC
		Total		22	

Note: All Industrial training / Internships will be done in summer break of previous academic session. Assessment for the same will be done within first two weeks of opening of academic session by department.

List of Department Elective Courses

Category	Course Code	Subject	Credit
Department	BMA-307	Mechanical Vibration	3-0-2
Elective Course –	BMA-309	Introduction to composites	3-0-2
I I I I I I I I I I I I I I I I I I I	BMA-311	Automation in Manufacturing	3-0-2
-	BMA-313	IC Engines	3-0-2
	BMA-315	Artificial Intelligence	3-0-2
	BMA-312	Metal Forming & Casting	3-0-2
Department	BMA-314	Advanced Strength of Materials	3-0-2
Elective Course –	BMA-316	Quality Management & Six Sigma	3-0-2
II	DIMA 510	Applications	502
	BMA-318	Gas Dynamics	3-1-0
	BMA-320	Design of Mechanisms	3-0-2
	BMA-322	Industrial Tribology	3-0-2
Department	BMA-324	Power Electronics	3-0-2
Thecuve Course –	BMA-326	Power Plant Engineering	3-0-2
	DMA 328	Combustion, Emission and Pollution	302
	DIVIA-320	Control	3-0-2
	BMA-330	Measurement and Meteorology	3-0-2
	BMA-405	Tool Engineering	3-0-2
Department	BMA-407	Welding Technology	3-0-2
Elective Course –	BMA-409	Mechanical Modeling and Simulation	3-0-2
IV	BMA-411	Flexible Manufacturing System	3-0-2
	BMA-413	Refrigeration and Air-Conditioning	3-0-2
	BMA-415	**E-Learning Based Course-1	
	BMA-417	Agile Manufacturing	3-0-2
Department	BMA-419	Hydraulic & pneumatic Control	3-0-2
Elective Course –	BMA-421	Ergonomic design	3-0-2
V	BMA-423	Computational Fluid Dynamics	3-0-2
	BMA-425	Hydraulic Machines and Hydro-Power Plant	3-0-2
	BMA-427	**E-Learning Based Course-2	
	BMA-406	Advanced Machine Design	3-0-2
	BMA-408	Maintenance and Reliability	3-0-2
	BMA-410	Reverse Engineering and Rapid Prototyping	3-0-2
	BMA-412	Non-conventional Manufacturing Processes	3-0-2
Department	BMA-414	Product design & Development	3-0-2
Elective Course –	BMA-416	**E-Learning Based Course-3	
VI VI	BMA-418	Fracture Mechanics	3-0-2
	BMA-420	Non-conventional Energy resources	3-0-2
	BMA-422	Cogeneration and Improved Power cycles	3-0-2
	BMA-424	MEMS & NEMS	3-0-2
	BMA- 426	Design of Experiments	3-0-2

Production Technology-I				
Course Code: BMA-201	Credits: 4			
Contact Hours: L-3 T-0 P-2	Semester: 3			
Course Category: DCC				

Introduction: This course focuses on the introduction to mechanical manufacturing methods by which materials are economically processed into different shapes. We study different types of material removing and shaping process to convert a material to desired shape.

Course Objectives: The Objective of this course is to

- Familiarize the student with different production process
- Make them able to decide proper process production process for real time economic production.

Pre-Requisites: Workshop Practice

Course Outcomes: Having successfully completed this course, the student will:

- **CO1**: Have sound knowledge of basic mechanical operations and different casting processes.
- **CO2**: Be able to evaluate different welding techniques.
- **CO3:** Have knowledge about forming and rolling processes.
- **CO4:** Have knowledge about powder metallurgy and additive manufacturing.

Pedagogy: The teaching-learning of the course would be organized through lectures, tutorials, assignments, projects/ presentations and quizzes. Faculty members strive to make the classes interactive so that students can correlate the theories with practical examples for better understanding. Use of ICT, web-based resources as well as flipped class room teaching will be adopted.

Contents:

UNIT I	11 Hours			
General Introduction- Manufacturing; definition and broad classification				
Casting – Sand mould casting, Pattern types, Design of pattern, testing of moulding sand, Cores, Gating				
systems, Principle, process and applications of Die casting, Centrifugal casting, Investment cas	sting, and			
Continuous casting, Melting of metal for casting, Casting defects their causes and remedies, Cle	aning and			
Inspection of castings, Foundry mechanization.				
UNIT II	11 Hours			
Welding- Fusion welding, Principle, equipment, and applications of Arc Welding, Gas Weldin	g, Submergedarc			
welding, TIG and MIG, Induction welding; Plasma arc welding, Resistance welding, Soli	d state welding,			
Ultrasonic Welding, Electron Beam Welding (EBW) and Laser Beam Welding (LBW). Edge pr	reparation,			
Types of joints, welding techniques and position. Welding defects, their causes and remedies.	_			
UNIT III	11 Hours			
Forming Processes – Introduction, General principles, major classification, Hot working and cold working;				
principle, advantages and applications, Forging Definition and classification, work materials different forging				
operations, tools and equipment, drop forging and press forging (pressing) methods and use, Forgingdies types and				
design calculations.				
Rolling-Introduction, basic principles and general applications, Characteristics and application	ns of hot rolling			
and cold rolling; various rolling processes, Wire drawing and Extrusion, Basic principles a	nd			
requirements, Classification, methods and applications,				
UNIT IV	11 Hours			
Powder Metallurgy				
Introduction, Production of metal powders, Compaction and sintering processes, Secondary and finishing				
operations, advantages, limitations and applications of powder metallurgy. Case Study				
Additive Manufacturing				
Introduction to 3-D Printing, Stereo lithography, Selective Laser Sintering, Fused Deposition Modelling.Case				

Introduction to 3-D Printing, Stereo lithography, Selective Laser Sintering, Fused Deposition Model study

Text Boo	ks
1.	Rao, P.N. "Manufacturing technology: foundry, forming and welding": McGraw-Hill, 2018.
2.	Ghosh, A., & Mallik, A. K. "Manufacturing science", 2 nd Edition, Ellis Horwood, 1986.
3.	Raghuwanshi B. S, "A Course in Workshop Technology Vol. 1", 1st Edition, Dhanpat Rai and
	Sons, 2015.
4.	Hazra Chaudhuri S. K., "Elements of workshop Technology Vol. 2", 1st Edition, Media
	Promoters, 2008.
5.	Kai, Chua Chee, Fai Leong, "Rapid Prototyping: Principle & Application in Manufacturing", 1st
	Edition, John Willey, London, 2003.
Reference	e Books/Material
1.	Kalpakjian, S., & Schmid, S. R. "Manufacturing processes for engineering materials", 6th
	Edition, Pearson Education, 2008.
2.	Groover, M. P. "Introduction to manufacturing processes". 1st Edition, Nashville, TN: John
	Wiley &Sons. 2012.
3.	www.nptel.ac.in
4.	http://ocw.mit.edu

Strength of Materials				
Course Code: BMA-203	Credits: 4			
Contact Hours: L-3 T-0 P-2	Semester: 3			
Course Category: DCC				

Introduction: Strength of materials subject is basically the branch of mechanics which deals the study of forces on deformable solids. The study of strength of materials often refers to various methods of calculating the stresses and strains in structural members, such as beams, columns, and shafts. The methods employed to predict the response of a structure under loading and its sensitivity to various failure modes takes into account the properties of the materials.

Course Objectives:

- To get detailed analysis of the stress and strain behaviours in deformable solids
- To find deflections in different elements when these elements are under bi axial state of stress.
- Evaluate the allowable loads and associated allowable stresses before mechanical failure.
- Understand the adequacy of mechanical and structural elements under different loads is essential for the design and safe evaluation of any kind of structure.
- The students are to be provided hands on practical exposure on topics covered in the course.

Pre-Requisites: BMA-110 (Engineering Mechanics)

Course Outcomes: Having successfully completed this course, the student will be able to

- **CO1:** Understand basic concepts of compound stresses & strains, stresses in beams, deflection of beams.
- **CO2:** Analyze and solve problems related to fixed beams, continuous beams and torsion bars.
- **CO3:** Apply the concept of springs, columns and struts in engineering application.
- **CO4:** Solve stresses in thin pressure vessel, thick pressure vessel and bending of curved bars.

Pedagogy: Classroom teaching is supported by White board, black board, chalks, markers, projector and screen. The hand written notes, PowerPoint slides and assignments will be provided to the students and also mailed to them. The students can also raise their issues related to the course in the class and mail.

UNIT I	11 Hours	
Simple Stresses & strains: Tensile, Compressive, shear and volumetric stresses and	d Strains,	
stress strain diagram, complementary shear stress, lateral strain and Poisson's ratio.		
Compound bars and Temperature stresses: Stresses in compound bars carrying a	ixial loads	
and subjected to temperature stresses.		
Compound Stresses & Strains: Two dimensional stress system, conjugate shear stress at a	point on a	
plane, principal- planes, principal stresses, Mohr's circle for plane stresses, Plane strain.		
UNIT II	11 Hours	
Simple bending: Shear force and bending moment diagrams of cantilevers, simply	supported	
beams under concentrated, uniformly loaded and varying loads with and without ov	erhangs.	
Stresses in Beams: Combined bending and direct stresses, bending stresses in bean	ns,	
bending stresses in composite beams, shearing stress in beams.		
Deflection of Beams: Moment curvature relation, direct integration method, Macaulay's and m	oment-	
area method, theories of elastic failures, strain energy due to bending, Castigliano's theorem.		
UNITII	10 Hours	
Fixed Beams: Macaulay's method for built-in beams, moment area method for fixe	d beams.	
Continuous beams : Clapeyron's theorem, beams with overhang, continuous beams	s with	
fixed ends.	c.	
Torsion : Torsion of circular shafts, strain energy due to torsion, shaft under action of	of	
varying torque, shaft in series and parallel, compound shafts, combined bending and	torsion.	
	10 Hours	
springs: Closed and open coll helical spring subjected to axial load, spring in parall series.	iel &	
Columns and Struts: Elastic stability of columns, buckling of columns, slenderness	s ratio and	
conditions, derivations of Euler's formula for elastic buckling load, Equivalent lengths and		
Rankine Gordon empirical Formulae.		
Thin Pressure Vessel: Thin Pressure Vessels, Circumferential and longitudinal stre	esses in	
thin cylindrical shells and thin spherical shell under internal pressure. Thick Pressure Vessel: Lame's theory.		
Text Books		
1. R.K. Rajput, "Strength of Materials", S. Chand Publication, New Delhi, 19	98.	
2. Ryder G.H., "Strength of Materials", Macmillan, Delhi, 2003.		
3. R.K. Bansal, "Strength of Materials", Laxmi Publication, New Delhi, 2001		
Reference Books		
1. Timoshenko S.P., "Elements of Strength of Materials", E-W. P, N. Delhi, 2	2000.	
2. Hibbler R.C., "Mechanics of Materials", Prentice Hall, New Delhi, 1994.		
3. Popov Eger P., "Engg. Mechanics of solids", Prentice Hall, New Delhi, 199	98.	

THERMAL ENGINEERING I

Course Code: BMA-205 Contact Hours: L-3 T-0P-2 Course Category: DCC Credits: 4 Semester: 3

Introduction: Thermal Engineering is a specialized sub-discipline of Mechanical Engineering that deals exclusively with heat energy and its transfer between not only different mediums, but also its transformation into other usable forms of energy. The basis of all thermal engineering topics is thermodynamics. Therefore, in this course, initially the emphasis has been given on advanced principles of thermodynamics. It is then followed by the studies on the components of steam power plant

Course Objectives:

- To get a better understanding of various laws and principles of thermodynamics and their applications in analyzing the processes taking place in heat engines.
- To provide a good platform to mechanical engineering students to understand, model and appreciate concept of dynamics involved in thermal energy transformation.
- The students are to be provided hands on practical exposure on topics covered in the course.

Pre-Requisites: NIL

Course Outcomes: Having successfully completed this course, the students will have:

- **CO1:** Knowledge about the laws of thermodynamics to analyze the processes taking place in a steampower plant and other thermal systems.
- **CO2:** Knowledge about concepts of entropy, availability and irreversibility and different thermodynamic relations.
- **CO3:** Basic knowledge of the gas power cycles and steam and its properties.
- **CO4:** Basic knowledge about the vapor power cycles.

Pedagogy: Classroom teaching is supported by White board, black board, chalks, markers, projector and screen. The hand written notes, PowerPoint slides and assignments will be provided to the students and also mailed to them. The students can also raise their issues related to the course in the class and mail.

UNIT I	11 Hours
Fundamentals of Thermodynamics: Thermodynamic System, Microsco	pic and
Macroscopic Point of View, Property and State, Equilibrium, Process, Co	oncept of
Reversibility, Work, Heat, Ideal Gas, Zeroth Law of Thermodynamics. First	Law of
Thermodynamics, Corollary of First Law of Thermodynamics, Internal Energy,	First law
applied to a closed system and open system, SFEE.	
Second Law of Thermodynamics: Clausius and Kelvin Planck statements, Equival	ence of
two statements, Carnot Theorems, Clausius Theorem.	
UNIT II	11 Hours
Entropy: Definition, Clausius inequality, Entropy a point function, Principle of ir	crease of
entropy, Entropy change during constant volume, isothermal, constant press	sure and
polytropic processes, Numerical problems.	
Availability and Irreversibility: High and low grade energy, Available and ur	navailable
energy, Loss of available energy due to heat transfer through finite temperature diffe	rence,

Availability, Availability of a fioli-flow of closed system, Availability of a steady flow system, Helmholtz and Gibbs functions, Irreversibility, Numerical problems. Thermodynamic relations: Reciprocal and cyclic relations, Property relations, Maxwell relations, Tds equations, Heat capacity relations, Relations for internal energy and enthalpy. UNIT III 10 Hou Gas Power cycles:Carnot cycle, Otto cycle, Diesel cycle, Dual cycle, Stirling and Ericsson cycles Brayton cycle	
System, Hennioliz and Globs functions, Inteversionity, Rumencar problems. Thermodynamic relations: Reciprocal and cyclic relations, Property relations, Maxwell relations, Tds equations, Heat capacity relations, Relations for internal energy and enthalpy. UNIT III 10 Hou Gas Power cycles:Carnot cycle, Otto cycle, Diesel cycle, Dual cycle, Stirling and Ericsson cycles. Brayton cycle. Numerical problems	
relations, Tds equations, Heat capacity relations, Relations for internal energy and enthalpy. UNIT III I0 Hou Gas Power cycles:Carnot cycle, Otto cycle, Diesel cycle, Dual cycle, Stirling and Ericsso cycles Brayton cycle, Numerical problems	
UNIT III 10 Hou Gas Power cycles:Carnot cycle, Otto cycle, Diesel cycle, Dual cycle, Stirling and Ericsso cycles Brayton cycle, Numerical problems	
Gas Power cycles:Carnot cycle, Otto cycle, Diesel cycle, Dual cycle, Stirling and Ericsso	
cycles Brayton cycle, Numerical problems	
LUVUEN DIAVIUITUVUE INTITETUALDIUDETIN	
Steam and its properties: Phase transformation of water on $\mathbf{p}_{-\mathbf{v}}$. The and has diagrams	
Properties of saturated water wet steam dry saturated steam and superheated steam. Steam	
Tables and Mollier chart for thermodynamics properties. Measurement of dryness fraction	
Numerical problems	
UNIT IV 10 Hou	
Vanor Power Cycles: Rankine cycle Comparison of Rankine and Carnot vanor cycle	
Methods of improving the performance of Rankine cycle Superheating Reheating	
Regenerative cycle Binary vapor cycle Numerical problems	
Combustion of Fuels: Combustion reactions. First law applied to a combustion reaction.	
Mass balance. Energy balance. Stoichiometric air-fuel ratio. Actual air-fuel ratio from the	
analysis of products, Enthalpy of formation, Heat of combustion, Heating Values-Enthalpy of	
combustion, Adiabatic flame temperature.	
Text Books	
1. Cengel and Boles, "Thermodynamics: Engineering Approach", Tata McGraw-	
Hill Companies, 2011.	
2. P. K. Nag, "Engineering Thermodynamics", Tata McGraw-Hill Publishing	
Company Limited, New Delhi, India, 2011.	
3. Van Wylen and Sonntag, "Fundamentals of Classical Thermodynamics", John Wile	
& Sons Inc., 2002.	
4. P. L. Ballaney, "Thermal Engineering", Khanna Publishers, Delhi, India, 2012.	
Reference Books	
1. Michael J. Moran, Howard N. Shapiro, "Fundamentals of Engineering	
Thermodynamics", John Wiley & Sons Inc.	
2. P. K. Nag, "Power Plant Engineering", Tata McGraw-Hill, New Delhi, India.2012	
3. S. C. Arora and S. Domkundwar, "A course in Power Plant Engineering", Dhanpat	
Rai & Sons, Delhi, India., 2012.	
4 M M El Wakil "Power Plant Engineering" Tata McGraw-Hill Companies 2002	

NUMERICAL TECHNIQUES FOR ENGINEERS		
Course Code: BAS-205	Credits: 3	
Contact Hours: L-2 T-1 P-0	Semester: 3	
Course Category: AEC		

Introduction: Numerical Methods give insight into problems we cannot otherwise solve. These methods provide us the way to solve problem when exact methods fails or unable to produce the desirable results.

Course Objectives:

- To motivate the students to understand and learn various numerical techniques to solve mathematical problems representing various engineering, physical and real life problems.
- To provide constructive methods for obtaining answers to such problem for which analyticalmethods fails to find solutions.

Pre-requisites: Calculus, Differential equations, some exposure to linear algebra (matrices) helps.

Course Outcomes: Upon completion of this course, the students will be able to:

- **CO1:** Evaluate how to obtain numerical solution of nonlinear equations using bisection, secant, Newton, and fixed-point iteration methods.
- **CO2:** Solve system of linear equations numerically using iterative methods.
- **CO3:** Understand how to approximate the functions using interpolating polynomials.
- **CO4:** Solve differential equations numerically.

Pedagogy: Apart from class room teaching, main focus is to enhance problem solving ability supported by weekly assignments and discussing individual's doubts.

UNIT-I	7 Hours	
Floating-Point Numbers: Floating-point representation, rounding, chopping, en conditioning and stability, Convergence of iterative methods. Non-Linear Equations: Bisection, secant, fixed-point iteration, Newton method and multiple roots, their convergence analysis and error analysis.	rror analysis, - d for simple	
UNIT-II	7 Hours	
Linear Systems and Eigen-Values: LU decomposition, Gauss Seidel iteration method, Successive-over-relaxation (SOR) iteration methods and their convergence, ill and well-conditioned systems, Rayleigh's power method for eigen-values and eigen-vectors.		
UNIT-III	6 Hours	
Interpolation and Approximations: Finite differences, Newton's forward and backward interpolation, Lagrange and Newton's divided difference interpolation formulas with error analysis. Numerical Integration: Newton-Cotes quadrature formulae (Trapezoidal and Simpson's rules) and their error analysis, Gauss-Legendre quadrature formulae.		
UNIT-IV	8 Hours	
Differential Equations: Solution of initial value problems using Picard, Taylor series, Euler's and Runge-Kutta methods (up to fourth-order), system of first-order and second-order differential equations.		

Content

Text Bo	oks	
1	Jain M.K., Iyengar, S.R.K., and Jain, R.K. Numerical Methods for Scientific and	
	Engineering Computation, $_{6}^{\text{th}}$ Edition, New Age International Publication, 2012.	
2	Sastry S., Introductory Methods of Numerical Analysis, 5 th Edition, Prentice Hall India Learning Private Limited; 2012.	
3	Conte, S.D and Carl D. Boor, Elementary Numerical Analysis: An Algorithmic approach, SIAM-Society for Industrial and Applied Mathematics, 2017.	
4	Grewal, B. S., "Higher Engineering Mathematics", 44 th Edition, Khanna Publishers, 2012.	
Reference Books		
1	Gerald C.F and Wheatley P.O., Applied Numerical Analysis, 8 Edition,	
	Pearson Education, 2011.	
2	Chappra S.C., Numerical Methods for Engineers, 7 th Edition, McGraw- Hill Higher Education, 2014.	

Machine Drawing Lab		
Course Code: BMA-207 Contact Hours: L-0 T-0P-2 Course Category: DCC	Credits: 1 Semester: 3	

Introduction: Technical Graphics is used to communicate the necessary technical information required for manufacture and assembly of machine components. These drawings follow rules laid down in national and International Organizations for Standards (ISO). Hence the knowledge of the different standards is very essential. Students have to be familiar with industrial drafting practices and thorough understanding of production drawings to make themselves fit in industries.

Course Objectives:

- Provide the fundamental concepts of machine drawing elaborating on how to concretize the idea of new structure such as a machine element.
- Study the conventions and rules to be followed by engineers for making accurate drawings.
- Understand the basic dimensioning practices that have to be followed in the preparation of drawings.
- Help the student in the visualization of assembly and sub assembly of various machine elements.
- Train the students in the preparation of assembly drawings

Pre-Requisites: BMA-130 Engineering Graphics

Course Outcomes:

Having successfully completed this course, the students will be able to:

- **CO1:** Visualize and draw a Mechanical Engineering part and joints.
- **CO2:** Design a system, component or process to meet desired needs within realistic constraints.
- **CO3:** Identify, formulate, and solve engineering drafting and drawing problems.

Pedagogy: Classroom teaching is supported by White board, black board, chalks, markers, projector and screen. The hand written notes, PowerPoint slides and assignments will be provided to the students and also mailed to them. The students can also raise their issues related to the course in the class and mail.

Contents:

List of Experiments:

To design and draw:

- 1) Forms of thread
- 2) Different types of bolts and rivets
- 3) Knuckle joint

- 4) Flange coupling
- 5) Universal coupling
- 6) Rivet joint
- 7) Threaded joint
- 8) Gib and cotter joint
- 9) Screw jack
- 10) Stuffing box
- 11) Connecting rod
- 12) Plumber Block
- 13) Multi plate clutch

Text Bo	oks
1.	Gill P.S., A Textbook of Machine Drawing ,Katson Publishing, 2013.
2.	Bhatt, N.D., Machine Drawing, Charotar Publishing House Pvt. Limited, 2014.

Operations Management		
Course Code: BMA 210	Credits: 4	
Contact Hours: L-3 T-1P-0	Semester: 3	
Course Category: OEC		

Introduction: This course provides a general introduction to operations management. Operations management is the design and control of business processes, that is, the recurring activities of a firm. Along with finance and marketing, operations is one of the three primary functions of a firm. At the risk of being simplistic, one may say that marketing generates the demand, finance provides the capital, and operations produces the product or delivers the service. More generally, operations spans the entire organization: COOs are in charge of R&D, design/engineering, production operations, marketing, sales, support and service.

Course Objectives: This course considers the operations from a managerial perspective .

- To explain the performance measures of operations viz. productivity, quality and effectiveness.
- Deliver important concepts such as location decision, facility layout, forecasting, production scheduling, inventory management, replacement analysis are discussed.
- Provide a fair understanding of the role of a Production / Operations Manager in business processes.
- The students are to be provided hands on practical exposure on topics covered in the course.

Pre-Requisites: NIL

Course Outcomes: Upon completion of this course, the students will be able to – **CO1:** Explain the concept of operations management and production management

CO2: Illustrate different types of production layout, method study and work study

CO3: Describe inventory management and material requirement planning

CO4: Analyse different types of maintenance procedure

Pedagogy: Classroom teaching is supported by White board, black board, chalks, markers, projector and screen. The hand written notes, PowerPoint slides and assignments will be provided to the students and also mailed to them. The students can also raise their issues related to the course in the class and mail.

UNIT I	11 Hours
Introduction –Introduction to productivity, Multi Factor productivity, Principles of	
management, Organization structure.	
Capacity Planning, Plant Location and Plant Layout – Introduction, need for sel	ecting a
suitable location, Location Factors, Quantitative Method, Principles of Plant layout,	Types of
Layout – Product, Process, Fixes Position, Cellular Layout.	
UNIT II	11 Hours
Demand Forecasting-Need for demand forecasting, Techniques of forecasting, Tin	ne
series analysis, Least Square Method, Moving Average, Exponential Method and	
QualitativeTechniques.	
Method Study - Introduction, Objectives Steps, Micromotion Study, Cycle graph and chrono cycle graph, Therbligs and SIMO charts.	
Work Study – Objectives, Different Techniques, Standard Time, Allowances, Time	e
studyNumerical, Performance Rating, Work sampling. Process and Product Life Cy	cle,
Material Requirement Planning - Introduction, MRP objectives, Functions served	d by MRP
Production Planning and Control, Supply chain and Logistics Management, Product	tion
Scheduling.	
UNIT III	10 Hours
Inventory Management - Introduction, Reasons for Holding Inventories, Rele	evant
Costs of Inventories, EOQ models, Quantity Discount Models, Safety Stock, Inven	ntory
controlsystem, Selective Control of Inventory ABC analysis, VED analysis.	
Production Cost Concepts - Introduction, Cost of Production, Classification	and
analysisof Cost, break even analysis, Make and Buy.	
UNIT IV	10 Hours
Industrial Maintenance – Concepts of Maintenance, Organisation for Maintenance	e
department, Types of Maintenance-Preventives, Breakdown and Corrective	
Maintenance, Failure Analysis, Maintenance Performance, Replacement policies of	
machines.	
1. Martinich, J.S., Production and Operations Management: An Applied Mode	
Approach, John whey and Sons, New Deini, 2008.	ern
2. Richard B. Chase, Nicholas J.A., Jacobs, F.R., "Production and	ern
One section Management ⁷⁷ 'L'ete MaC'nerry Hill Nerry Delhi 1009	ern
Operation Management ²⁷ , Tata McGraw Hill, New Delhi, 1998.	tions
 Operation Management", Tata McGraw Hill, New Delhi, 1998. 3. Ravi Shankar, "Industrial Engineering and Management", Galgotia Publica 	ern tions.
Operation Management", Tata McGraw Hill, New Delhi, 1998. 3. Ravi Shankar, "Industrial Engineering and Management", Galgotia Publica Reference Books 1 1 Panaersalvam, P., "Production and Operations Management", Drantica Hall	tions.
Operation Management", Tata McGraw Hill, New Delhi, 1998. 3. Ravi Shankar, "Industrial Engineering and Management", Galgotia Publica Reference Books 1. Paneerselvam, R., "Production and Operations Management", Prentice Hall 2012	ern tions. India,
Operation Management", Tata McGraw Hill, New Delhi, 1998. 3. Ravi Shankar, "Industrial Engineering and Management", Galgotia Publica Reference Books 1. Paneerselvam, R., "Production and Operations Management", Prentice Hall 2012. 2. Khanna, O.P., "Industrial Engineering and Management", Dhannat Pai & S.	tions. India,

Production Technology- II		
Course Code: BMA-202	Credits: 4	
Contact Hours: L-3 T-0 P-2	Semester: 4	
Course Category: DCC		

Introduction: At the heart of any manufacturing system is a set of processes which change the size, shape and form of raw materials into the desirable thus giving an industrial nation the power of growing. This course is an introductory course for engineering professionals who would like to take up careers in manufacturing particularly at the process level.

Course Objectives: The objective of this course is

- To familiarize the student with all conventional Machine Tools and to make them able to decide proper process of machining for real time economic manufacturing operations.
- Learn the fundamentals of machining, optimization, non-conventional machining, fixturing and metrology
- Develop first order mathematical descriptions for selected processes
- Understand the advantages and limitations of various processes in terms of quality productivity
- Apply this knowledge to manufacturing process selection, design and part quality

Pre-Requisites: Production Technology I

Course Outcomes: Having successfully completed this course, the student will be able to

- **CO1:** Classify Machine Tools and their operations
- **CO2:** Illustrate Lathe, Drilling operations and their components
- **CO3:** Describe Milling and Grinding operations
- **CO4:** Analyse machining time for Lathe, Drilling and Milling.

Pedagogy: The teaching-learning of the course would be organized through lectures, tutorials, assignments, projects/ presentations and quizzes. Faculty members strive to make the classes interactive so that students can correlate the theories with practical examples for better understanding. Use of ICT, web-based resources as well as flipped class room teaching will be adopted.

UNIT I	11 Hours	
Introduction: Classification of machine tools based on application and produc	ction rate:	
General purpose, Single purpose and Special purpose machines, Classification based of	onTypes of	
machine tools and the processes, Generating and	forming	
Single Point cutting tool nomenclature Elements of tool geometry, cutting to	ool & its	
Materials and ap	oplications.	
Lathe - Centre lathe, facing lathe, gap-bed lathe, capstan and turret lathe, CNC la	the, major	
difference between CNC lathe and conventional lathe. Major sub-assemblies- Bed, Liv	estock, tail	
stock, carriage consisting of saddle, cross-slide, compound Slide tool post and apron, We	ork holding	
devices: self-centering three jaw chuck, Independent, four jaw chuck, collets, face	plates, dog	
carriers, centers and mandrels. Driving mechanisms, apron mechanism, thread cutting the	mechanism	
and Calculations, features of half-nut engagement – disengagement, indexing dial mechanism.		
UNIT II	11 Hours	
Operations on lathe: taper turning, related calculations, thread cutting, facing, und	er-Cutting,	
Drilling, boring, parting-off, knurling, is chamfering. Reciprocating Type Machine Tools- Shaper,		
Planer and Slotter, Constructional features, Basic Machines and kinematics and related calculations		
Drilling Machines: Classification and uses, Constructional features of bench drilling mac	hine, radial	
drilling machine, multi-spindle drilling machine, feed mechanism, work Holding devic	es, Tool –	

holding devices. Different drilling operations: Drilling, reaming, Counter boring and countersinking etc., estimation of drilling time.

UNIT III 11 Hours **Milling Machines**: Types of general-purpose milling machines- horizontal, vertical and Universal. Types of milling cutters and their applications, different milling operations, work holding devices- vice, clamps, chucks, dividing head and its use, simple, compound and differential indexing. Indexing calculations and machining time calculations. Introduction to machining centers

UNIT IV

11 Hours

Grinding Machines: Different types of grinding machines: cylindrical, surface and center-less grinding machines, basic constructional features and mechanisms, specifications, Wheel Dressing and Wheel Truing Specifications of grinding wheel, Effect of grinding conditions and type of grinding on wheel behavior, equivalent diameter of grinding wheel.

Introduction to honing, lapping and super-finishing processes.

Text Books		
1.	P.N. Rao, "Manufacturing Technology: Metal Cutting & Machine Tools", 4th Edition,	
	McGraw Hill Higher Education, 2013.	
2.	Serope Kalpakjian and Steven Schmid, "Manufacturing Engineering & Technology", 7th	
	Edition, Pearson Education 2013.	
3.	B.S. Raghuwanshi, "Workshop Technology Vol.2"1st Edition, Dhanpat Rai & Sons, 2013.	
4.	Hajra Chandhari, S.K., Nirjhar and Roy S.K., "Elements of Workshop Technology Vol.2",	
	1 st Edition, Media Promoters, 2018.	
Reference Books		
1.	P.C. Sharma, "A Text Book of Production. Engineering", 10th Edition, S. Chand, New	
	Delhi, 2004.	
2.	Jain, K. C., & Chitale, A. K. "Textbook of Production Engineering", 2 nd Edition, PHI	
	Learning2014.	
3.	Bawa H.S., "Workshop Technology Vol.2", 2 nd Edition, Tata McGraw Hill, 2004.	
4.	Juneja, "Fundamental of Metal Cutting", 1st Edition, New Age Publications, 2017	
Internet Sources:		
1.	www.nptel.ac.in	
2.	http://ocw.mit.edu	

Theory of Machines		
Course Code: BMA-204	Credits: 4	
Contact Hours: L-3 T-0 P-2	Semester: 4	
Course Category: DCC		

Introduction: This is an important core mechanical design subject. This is a prerequisite for understanding machine design subject and students have to understand problems involved in designing mechanisms.

Course Objectives: The objectives of this course are

- To develop basic concepts of kinematics and dynamics in machines.
- To explain the concepts and formulas to be used for designing mechanism with linkages, using cams, gears, balancing and vibrations.
- To introduce the approaches and mathematical models used in kinematic and dynamic analysis of machinery.
- To give basic knowledge on kinematic and dynamic design of machinery.
- To give basic knowledge on mechanical vibrations.
- The students are to be provided hands on practical exposure on topics covered in the course.

Pre-Requisites: BMA-110: Engineering Mechanics

Course Outcomes: Having successfully completed this course, the student will be able to -

- **CO1:** Understand general concepts of kinematics pair.
- **CO2:** Analyze different types of cam profile for a given data.
- **CO3:** Understand the basics of dynamic analysis.
- **CO4:** Understand vibration and gyroscopic effect.

Pedagogy: Classroom teaching is supported by White board, black board, chalks, markers, projector and screen. The hand written notes, PowerPoint slides and assignments will be provided to the students and also mailed to them. The students can also raise their issues related to the course in the class and mail.

UNIT I	11 Hours
General concepts, Velocity and Acceleration Analysis: Introduction of Simple mechanism,	
Different types of Kinematics pair, Grublers rule for degree of freedom, Grashof's C	riterion
for mobility determination Inversions of 3R-P, 2R-2P chains, Kinematic analysis of	planar
mechanism.	
UNIT II	11 Hours
Cams: Classification, Cams with uniform acceleration and retardation, SHM, Cylcloidal	
motion, oscillating followers.	
Vibrations: Vibration analysis of SDOF systems, natural, damped forced vibrations,	

	UNIT III	10 Hours	
Gears: Geometry of tooth profiles, Law of gearing, involute profile, interference, helical, spiral and worm gears, simple, compound gear trains, Epicyclic gear trains–Analysis by tabular and relative velocity method, fiving targets		e, helical, alysis by	
Dynam	ic Analysis: Slider-crank mechanism, turning moment computations.		
	UNIT IV	10 Hours	
Balanc single a	Balancing: Static and Dynamic balancing, balancing of revolving and reciprocating masses, single and multi-cylinder engines		
Gyroso	copes: Gyroscopic law, effect of gyroscopic couple on automobiles, ships, air	crafts.	
1.	S.S. Rattan, "Theory of Machines", Tata McGraw Hill, 2000		
2.	Dr. V.P. Singh, "Theory of Machines", Dhanpat Rai & Co. (P) Ltd., 2001		
3.	Ghosh & A.K. Mallik, 'Theory of Mechanisms and Machines'', East West, P 2012.	ress,	
Referen	nce Books		
1.	Jagdish Lal, "Theory of Mechanism & Machines", Metropolitan Education,	2000	
2.	Thomas Beven, "The Theory of Machines", CBS Publishers, 2000.		
3.	P.L. Ballaney, "Theory of Machines & Mechanism", Khanna Publishers, 23 Edition, 2003.	rd	
4.	Norton, 'Kinematics and Dynamics of Machinery', Tata McGraw Hill, 2011		
5.	Khurmi R.S., Gupta J.K., "Theory of Machines", S. Chand & Co. Ltd.		

Engineering Materials		
Course Code: BMA-206 Contact Hours: L-3 T-0 P-2 Course Category: DCC	Credits: 4 Semester: 4	

Introduction: This course provides an overview of Engineering Materials as a basis for understanding how structure/property/processing relationships are developed and used for different types of materials

Course Objectives:

- To understand how and why the properties of materials are controlled by structure and bonding at the atomic-scale, and by features at the micro-structural and macroscopic levels.
- To understand the design, selection and processing of materials for a wide range of applications in engineering and elsewhere.
- To understand how and why the structure and composition of a material may be controlled by processing.
- The students are to be provided hands on practical exposure on topics covered in the course.

Pre-Requisites: NIL

Course Outcomes: After taking this course students will be able to

- **CO1:** Evaluate structure of metals and imperfection in solids.
- **CO2:** Analyze phase and equilibrium diagram.
- CO3: Understand different heat treatment processes and types of corrosion
- **CO4:** Analyze failure of the materials and dislocations and strengthening mechanisms in solids.

Pedagogy: Classroom teaching is supported by White board, black board, chalks, markers, projector and screen. The hand written notes, PowerPoint slides and assignments will be provided to the students and also mailed to them. The students can also raise their issues related to the course in the class and mail.

UNIT I	11 Hours
Structure of metals: Crystal structure, crystal systems, crystallographic points, directions	
and planes, linear and planar density computations, Single crystal, polycrystallin	e materials,
Anisotropy, Polymorphism and anisotropy X-Ray diffraction technique.	
Imperfection in solids: Point defects, vacancies, linear defects, interfacial defects, volume defects, effect of crystal defects on mechanical properties of the materials, grain size determination.	
UNIT II	11 Hours

Materials: Classifications of Cast Iron, steels and their alloys, effect of alloying elements, properties, IS standards codes for Cast iron and steels, composite materials and non-metals.

Phase and Equilibrium Diagrams: Unary and binary phase diagrams, phase equilibria, phase rule, types of equilibrium diagrams, solid solution types, Iron- Carbon diagrams. Microstructural Exam: Grain size determination, Comparative study of microstructure of various metals such as mild steel, CI, brass.

	UNIT III	10 Hours
Heat T	reatment: Principles and purpose of heat treatment of plain carbon steel	s, annealing,
Normal	izing, hardening, tempering, isothermal treatment, case hardening -	carburizing,
nitridin	g etc, precipitating hardening of aluminum alloys, cooling curves.	
Corros	ion: Types of corrosion, Galvanic cell, rusting of Iron, Methods of protect	ion
from co	prrosion.	
	UNIT IV	10 Hours
Failure	e of the materials: Ductile fracture and brittle fracture; Fatigue fail	ure, Design
conside	rations for fatigue failure, Creep failure of the materials and creep resistan	t materials.
Disloca	tions and strengthening mechanisms in solids: Slip systems, slip in sing	gle
crystal,	twinning, Hall-Petch equation, solid-solution strengthening, strain harden	ing,
recovery, recrystallization and grain growth.		
Text Bo	poks	
1.	V. Raghavan, "Material Science & Engineering", Prentice Hall India Ltd.	, 2001.
2.	William D. Callister, "Material Science & Engineering" Wiley India Ltd.	, 2010.
3.	Sidney H. Avner, "Introduction to Physical Metallurgy", Tata McGraw-H	[ill,
2007. R	leference Books	
1.	Porter and Easterling, "Phase transformation in metals and alloys", Van N	lostrand
	Reinhold Company Ltd, 1999.	
2.	Reed Hill, "Principles of Physical Metallurgy" Cengage Learning Ltd, 20	09
3.	Budinski et al, "Engineering Materials & Properties", Prentice Hall India,	New
	Delhi, 2004.	
4.	Peter Haasen, "Physical Metallurgy", Cambridge Univ. Press, 1996.	

THERMAL ENGINEERING II	
Course Code: BMA-208	Credits: 4
Contact Hours: L-3 T-0P-2	Semester: 4
Course Category: DCC	

Introduction: This course discusses about the processes in an open and close system, the basic laws on heat transfer processes and their application, as well as the combustion occurs inside the engine cylinder. Analysis of compressors and gas turbines come under this course.

Course Objectives:

- The Objective of this course is to familiarize the student with the basics of compressors and engine performance with combustion analysis.
- To appreciate concept of dynamics involved in thermal energy transformation in power plants.
- The students are to be provided hands on practical exposure on topics covered in the course.

Pre-Requisites: BMA-205: Thermal Engineering I

Course Outcomes: Having successfully completed this course, the student will be able to

- **CO1:** Have knowledge about reciprocating and centrifugal air compressor.
- **CO2:** Apply laws of thermodynamics in practical life such as engines and compressors.
- **CO3:** Analyze the Gas Turbines
- **CO4:** Understand the concepts of compressible fluid flow fundamentals.

Pedagogy: Classroom teaching is supported by White board, black board, chalks, markers, projector and screen. The hand written notes, PowerPoint slides and assignments will be provided to the students and also mailed to them. The students can also raise their issues related to the course in the class and mail.

UNIT I	11 Hours
Reciprocating Air Compressor - Single stage compressor: Equation for work,	Isothermal,
adiabatic and polytropic compression, Isothermal and adiabatic efficiency,	Volumetric
efficiency, Effect of clearance, Multi-stage compression with inter cooling.	
Centrifugal Air Compressor - Constructional details, working principle, Stati	c and total
heads, Velocity diagrams and theory of operation, Work done by impeller, I	Losses and
isentropic efficiency of compressor, Prewhirl, Surging and choking of compressors.	
UNIT II	11 Hours
Fundamentals of IC Engines - Classification, Engine components and basic termine	ology, two
stroke and four stroke engines, SI and CI engines, Theoretical and actual indicator di	agrams,
Valve and Port timing diagram, Components of IC Engine and their functions, Battery ignition	
system for SI engines, Fuel Injection system for CI Engines, Basics of Cooling and I	ubrication
systems for IC engines, Detonation in SI Engines, Knocking in CI Engines, Octane N	Number
and Cetane Number.	
UNIT III	10 Hours

Gas Turbines- Open and closed cycles for gas turbine, Analysis of basic closed cycle for gas turbine, Thermal efficiency and specific work output, Optimum pressure ratio for maximum cycle output and for maximum cycle efficiency, Effects of regeneration, Re-heating and intercooling on thermal efficiency and work output, Isentropic efficiencies of turbine and compressor, Advantages and disadvantages of gas turbines, Application of gas turbines

UNIT IV

10 Hours

Jet Propulsion - Different types– screw propeller, turbo-jet, turbo-prop, ram jet and pulse jet engines; Operation of rocket engine.

Fundamentals of Compressible Flow: Continuity, momentum and energy equation, control volume, sonic velocity, Mach number and its significance, Mach waves, Mach cone and Mach angle, Static and stagnation states, Stagnation pressure ratio, stagnation temperature ratio, Numerical Problems.

Text Books		
1.	Cengel and Boles, "Thermodynamics: Engineering Approach", Tata McGraw-	
	Hill Companies, 2011.	
2.	Van Wylen and Sonntag, "Fundamentals of Classical Thermodynamics", John Wiley	
	& Sons Inc., 2002.	
3.	P. K. Nag, "Engineering Thermodynamics", Tata McGraw-Hill Publishing	
	Company Limited, New Delhi, India, 2011.	
4.	Mathur and Sharma, "Internal Combustion Engines", Dhanpat Rai Publications, 2003.	
5.	V. Ganesan, "Internal Combustion Engines", Tata McGraw-Hill Publishing Company	
	Limited, New Delhi, India, 2004.	
6.	P. L. Ballaney, "Thermal Engineering", Khanna Publishers, Delhi, India, 2012.	
Reference Books		
1.	Michael J. Moran, Howard N. Shapiro, "Fundamentals of Engineering	
	Thermodynamics", John Wiley & Sons Inc.	
2.	P. K. Nag, "Power Plant Engineering", Tata McGraw-Hill, New Delhi, India, 2012.	
3.	S. C. Arora and S. Domkundwar, "A course in Power Plant Engineering", Dhanpat Rai	
	& Sons, Delhi, India., 2012.	
4.	Arthur H. Lefebvre and Dilip R. Ballal, "GAS Turbine Combustion Alternative	
	Fuels and Emissions" CRC Press: Taylor & Francis Group.	
5.	M.M. El Wakil, "Power Plant Engineering", Tata McGraw-Hill Companies, 2002.	